Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 962154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465612

RESUMO

Polycystic ovary syndrome (PCOS) is a universal endocrine and metabolic disorder prevalent in reproductive aged women. PCOS is often accompanied with insulin resistance (IR) which is an essential pathological factor. Although there is no known cure for PCOS, cangfudaotan (CFDT) decoction is widely used for the treatment of PCOS; nevertheless, the underlying mechanism is not clear. In this study, 40 Sprague-Dawley (SD) rats (female) were randomized to 4 groups, namely the control group, PCOS group, PCOS+CFDT group, and PCOS+metformin group. The rats in the control group were fed a normal-fat diet, intraperitoneally injected with 0.5% carboxymethyl cellulose (CMC, 1 mL/kg/d) for 21 days and orally given saline (1 mL/kg/d) for the next 4 weeks. The rats in the PCOS group, PCOS+CFDT group, and PCOS+Metformin group were fed a high-fat diet (HFD) and intraperitoneally injected with letrozole (1.0 mg/kg) for 21 days. During this period, we recorded the body weight, estrous cycles, and rate of pregnancy in all rats. We also observed the ovarian ultrastructure. Blood glucose indices, serum hormones, and inflammatory factors were also recorded. Then, we detected apoptotic and mitochondrial function, and observed mitochondria in ovarian granular cells by transmission electron microscopy. We also detected genes of ASK1/JNK pathway at mRNA and protein levels. The results showed that CFDT alleviated pathohistological damnification and apoptosis in PCOS rat model. In addition, CFDT improved ovarian function, reduced inflammatory response, inhibited apoptosis of granular cells, and inhibited the operation of ASK1/JNK pathway. These findings demonstrate the occurrence of ovary mitochondrial dysfunction and granular cell apoptosis in PCOS. CFDT can relieve mitochondria-dependent apoptosis by inhibiting the ASK1/JNK pathway in PCOS rats.


Assuntos
Metformina , Síndrome do Ovário Policístico , Feminino , Gravidez , Humanos , Ratos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos Sprague-Dawley , Células da Granulosa , Mitocôndrias , Apoptose , Metformina/farmacologia
2.
BMC Complement Med Ther ; 21(1): 100, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752661

RESUMO

BACKGROUND: Acute myocardial injury (AMI), which is induced by renal ischemia-reperfusion (IR), is a significant cause of acute kidney injury (AKI)-related associated death. Obesity increases the severity and frequency of AMI and AKI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) pretreatment was used to alleviate myocardial cell apoptosis induced by renal IR, and to determine whether TIIA combined with CsA would attenuate myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. METHODS: Male rates were fed a high fat diet for 8 weeks to generate obesity. AKI was induced by 30 min of kidney ischemia followed 24 h of reperfusion. Obese rats were given TIIA (10 mg/kg·d) for 2 weeks and CsA (5 mg/kg) 30 min before renal IR. After 24 h of reperfusion, the rats were anaesthetized, the blood were fetched from the abdominal aorta and kidney were fetched from abdominal cavity, then related indicators were examined. RESULTS: TIIA combined with CsA can alleviate the pathohistological injury and apoptosis induced by renal IR in myocardial cells. TIIA combined with CsA improved cardiac function after renal ischemia (30 min)-reperfusion (24 h) in obese rats. At the same time, TIIA combined with CsA improved mitochondrial function. Abnormal function of mitochondria was supported by decreases in respiration controlling rate (RCR), intracellular adenosine triphosphate (ATP), oxygen consumption rate, and mitochondrial membrane potential (MMP), and increases in mitochondrial reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), mitochondrial DNA damage, and mitochondrial respiratory chain complex enzymes. The injury of mitochondrial dynamic function was assessed by decrease in dynamin-related protein 1 (Drp1), and increases in mitofusin1/2 (Mfn1/2), and mitochondrial biogenesis injury was assessed by decreases in PPARγ coactivator-1-α (PGC-1), nucleo respiratory factor1 (Nrf1), and transcription factor A of mitochondrial (TFam). CONCLUSION: We used isolated mitochondria from rat myocardial tissues to demonstrate that myocardial mitochondrial dysfunction occurred along with renal IR to induce myocardial cell apoptosis; obesity aggravated apoptosis. TIIA combined with CsA attenuated myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Ciclosporina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , DNA Mitocondrial , Coração/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial , Obesidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...